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Results for structural and elastic properties of wurtzite and zinc-blende group-III nitrides are calculated using
the recently developed AM05 exchange-correlation (XC) functional. They are compared to calculations based
on the local-density approximation or the generalized-gradient approximation. We find that AM05 provides
a better agreement with experimental results. The atomic geometries are used to compute the quasiparticle
band structures within Hedin’s GW approximation, based on an initial electronic structure calculated using the
HSE hybrid XC functional. Important band parameters such as gap energies, crystal-field splittings, spin-orbit
coupling constants, and momentum matrix elements are derived. The less precisely known hole masses of InN
and the anisotropic spin-orbit constants for wurtzite are predicted. The wave-vector-induced spin-orbit splittings
of the valence and conduction bands are discussed.

PACS numbers: 71.15.Mb,71.20.Nr,71.70.Ej

I. INTRODUCTION

Over the last years group III-nitride compounds and their
alloys have received a lot of attention because of possible
applications in optoelectronic devices that operate in the in-
frared, visible, and ultraviolet (UV) spectral region. The in-
tense research and the commercial interest in the nitride semi-
conductors have driven the substantial progress in the knowl-
edge of their properties and the material quality (see e.g.
Ref. 1). In particular, remarkable breakthroughs in the growth
of InN films by means of molecular beam epitaxy (MBE) have
been achieved.2–4 Surprisingly, for such samples a band edge
as low as 0.64 eV was derived from luminescence and optical-
absorption measurements,2–4 which is much smaller than the
gap of 1.94 eV obtained in earlier experiments.5 Hence, by al-
loying AlN, GaN and InN, it is possible to tune the band gap
over a wide spectral range reaching from 0.64 eV up to 6.2
eV, i.e., covering the entire solar spectrum.6 In addition, free-
electron concentrations smaller than 1018 cm−3 and electron
mobilities larger than 2000 cm2/Vs were achieved.7 Besides
the fundamental gap also the band dispersion and especially
the electron mass can be varied over a wide range.1 The tuning
possibilities provide some interesting applications of the ni-
trides and their alloys in (i) solar cells,6 (ii) light-emitting and
laser diodes operating in the blue and UV spectral range,8,9

(iii) chemical sensors,10 and (iv) electronic devices operating
under extreme conditions or even for quantum cryptography
applications.11

The three group-III nitrides AlN, GaN, and InN crystal-
lize in the wurtzite (wz) structure under ambient conditions,
which corresponds to the P63mc (C4

6v) space group for van-
ishing strain in the samples. The group III-nitrides can also
be grown in the cubic zinc-blende (zb) structure with space
group F43m (T 2

d ) by means of different epitaxy techniques
such as MBE.12 However, even though high-quality films of
AlN, GaN and InN have been synthesized, research and ap-
plications were limited since large single crystals cannot be

grown. Therefore, existing experimental studies are usually
restricted to investigations of epitaxial layers and, hence, may
be influenced by the respective substrate, the interfaces, and
spontaneous as well as piezoelectric fields. Correspondingly,
a large variety of experimental results exists. For instance, the
electronic band parameters such as fundamental gaps, effec-
tive electron masses, and valence band (VB) dispersions (as
well as their variation with strain) are less precisely known
for the bulk materials. One prominent example is the recent
discovery of the InN gap smaller than 0.7 eV.2,4

Parameter-free calculations are a promising complement to
experiment, since they are not only capable of providing ma-
terial parameters but also give valuable insights into the un-
derlying physics. Ab-initio studies allow the investigation of
arbitrary crystal structures and, hence, can help to understand
the wz and zb polytypes of the nitrides including the influ-
ence of the actual atomic geometry on the material parame-
ters. Remarkable progress in the determination of band gaps,
effective masses, and k ·p parameters has been made recently
for the nitrides by applying modern quasiparticle electronic-
structure theory (based on the OEPx+G0W0 approach13 or the
self-consistent GW method14). However, these calculations
were restricted to lattice constants13 or unit-cell volumes14 ob-
tained in experiments. In both papers the hole effective masses
of InN have not been computed and the spin-orbit coupling
(SOC) has not been taken into account neither for the wz nor
the zb polytype. However, such calculations are now possible.
For different group-II oxides the influence of SOC has been
successfully included in calculations of the electronic struc-
ture and proven to be important.15–18

In this paper, the consequences for the quasiparticle (QP)
electronic structures upon inclusion of the SOC are investi-
gated for the wz and zb polytypes of the group-III nitrides
AlN, GaN, and InN. Lattice parameters as obtained from three
different approximations to exchange and correlation (XC)
within density functional theory (DFT) are employed. In Sec.
II, the theoretical framework and its numerical implementa-
tion are briefly presented. The results for the energetic, struc-
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tural, and elastic properties are compared in Sec. III. The
QP band structures and band structure parameters computed
within the GW approximation based on an electronic struc-
ture obtained using a hybrid XC functional are discussed in
the light of recent experimental data in Sec. IV. The effect of
the SOC is studied on band splittings and band dispersions.
Section V gives a brief summary and concludes the paper.

II. THEORETICAL FRAMEWORK AND
COMPUTATIONAL DETAILS

A. Ground-state properties

Ground-state properties such as the structural and elastic
properties can be derived from total-energy minimizations
within DFT.19,20 The XC functional is not exactly known and
approximations have to be used. Both the local density ap-
proximation (LDA) and the semi-local generalized-gradient
approximation (GGA) are common,20 however, the XC choice
affects the total energy and consequently the atomic geome-
try of the system. It has been found that the LDA tends to an
overbinding, i.e., leading to lattice constants that are ≈ 1 %
smaller than found in experiment, whereas many parametriza-
tions of the GGA underestimate the binding and yield too
large lattice constants (by up to 2 %) as demonstrated below.

In contrast, the recently developed AM05 XC functional21

seems to overcome some of the shortcomings related to ear-
lier versions of the GGA. It has been designed to treat systems
with varying electron densities (for instance systems that are
composed of bulk- and surface-like regions) by exploiting the
subsystem functional scheme.22 For each region, a different
XC subsystem functional (which is GGA-based) is created,
and the functionals are joined by interpolation based on an
index.21 Mattsson et al. compared the lattice parameters ob-
tained using AM05 for a large set of crystalline solids to the
ones calculated via the LDA and other GGA XC functionals.
They found that AM05 systematically performs better with an
accuracy almost as good as advanced hybrid functionals.23

In this work, the parameters a, c, and u of the wz lattice
and the cubic a0 of the zb lattice are computed by minimizing
the total energy Etot with respect to the atomic coordinates.
It has been ensured that the Hellmann-Feynman forces on the
atoms are smaller than 1 meV/Å. Moreover, the isothermal
bulk modulus B0 as well as its pressure derivative B′0 follow
from a fit of Etot(V ) to the Murnaghan equation of state;24 V
denotes the volume of the cells. In order to study the influence
of the XC functional, the LDA as parametrized by Perdew
and Zunger25 is used, as well as the PBE-GGA described by
Perdew, Burke, and Ernzerhof.26 In addition, the AM05 XC
functional21 is used to partly account for the inhomogeneity
of the electron gas.

All DFT calculations are performed within the implementa-
tion in the Vienna Ab-Initio Simulation Package (VASP).27,28

The pseudopotentials are generated by means of the projector-
augmented-wave method.29 Thereby, the N 2s, N 2p, In 4d,
In 5s, In 5p, Ga 3d, Ga 4s, Ga 4p, Al 3s, and the Al 3p elec-
trons are included in the valence shell. As suggested in

Ref. 23, the pseudopotentials in the AM05 case are gener-
ated based on the PBE XC functional. In the region between
the atomic cores the wave functions are expanded into plane
waves up to a cutoff energy of 400 eV. The Brillouin zone
(BZ) is sampled using 8 × 8 × 8 (8 × 8 × 6) Monkhorst-
Pack30 k-points for zb-AlN (wz-AlN) and 16× 16× 16 (16×
16 × 12) meshes for zb-GaN and zb-InN (wz-GaN and wz-
InN).

B. Single-particle excitations

The solution of the Kohn-Sham (KS) equation20 of DFT
provides the true ground-state electron density of the interact-
ing electrons as well as eigenvalues and eigenstates of non-
interacting KS particles. However, experimental techniques
such as photoelectron emission, inverse photoelectron spec-
troscopy, or tunnel spectroscopy, that measure band structures
or densities of states (DOS), involve electronic excitations
and rather probe single-QP energies. Also in transport ex-
periments, phenomena of charged carriers (electrons or holes)
and, therefore, electronic excitation effects, play a role.

DFT, however, suffers from the so-called band-gap prob-
lem: The KS gaps calculated for semiconductors and insu-
lators significantly underestimate the QP gaps derived from
measurements.31 The band-gap problem can be solved within
the framework of the many-body perturbation theory,32 which
yields a QP equation31 that properly includes the XC self-
energy of the electrons and, hence, accounts for the exci-
tation aspect. The non-Hermitian, non-local, and energy-
dependent self-energy is usually described by means of
Hedin’s GW approximation,33,34 where G denotes the single-
particle Green’s function and W represents the dynamically
screened Coulomb interaction.

Usually it is sufficient to treat the self-energy effects within
first-order-perturbation theory.35 This approach of calculating
QP eigenvalues ε

QP
ν (k), where ν is the band index and k the

Bloch wave vector in the BZ, is called G0W0 and is also im-
plemented in the VASP code.36 For relatively homogeneous
electronic systems the G0W0 corrections to the KS eigenvalues
from DFT-LDA or DFT-GGA lead to electronic band struc-
tures that are in reasonable agreement with measurements.31

However, for compounds with first-row elements, such as
the nitrides, the LDA/GGA+G0W0 procedure still underesti-
mates the band gaps.37 The idea of an iterative solution of the
QP equation seems to be more promising,35,38 unfortunately
it is inherently linked to a much higher computational cost.
Therefore, computing the QP energies from one step of per-
turbation theory, based on an initial electronic structure that is
closer to the final self-consistent solution than the KS eigen-
values and eigenstates are, is an efficient alternative. Such
an improved starting point can be obtained from the exact-
exchange optimized-effective potential (OEPx) approach39 or
by solving a generalized KS equation with a spatially non-
local XC potential.37,40

The HSE hybrid functional by Heyd, Scuseria, and
Ernzerhof41,42 (based on HSE06,43 but using a range parame-
ter of ω = 0.15 a.u.−1 instead of ω = 0.11 a.u.−1, see disam-
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biguation in Ref. 44), which has proven to work well for InN
polytypes,37,45 combines one quarter (α = 0.25) of the non-
local Hartree-Fock exchange with three quarters of the local
exchange obtained using the PBE-GGA functional. There-
fore, it effectively simulates the screened-exchange contribu-
tion to the GW self-energy. The inverse of the prefactor α of
the Fock operator can be interpreted as static screening corre-
sponding to a dielectric constant of 4. Moreover, the param-
eter ω describes the separation of the Coulomb potential into
a short- and a long-range part. The latter is assumed to be
screened in a Thomas-Fermi-like manner in solids, due to the
total valence electron gas.

In this work, SOC is taken into account via a non-collinear
description46 within the calculation of the HSE electronic
structure.15–17 It is not just numerically very expensive to em-
ploy a full HSE+GW approach including non-collinear spins,
moreover, the replacement of wave functions by spinors is not
enough because of the coupling of orbital and spin motion.
Hence, since the spin is not conserved,47 a simple general-
ization of the available codes is difficult. However, since all
orbital contributions to the mixed states are mostly p-like the
same influence of the QP corrections can be expected for the
spin-orbit-split band energies at a given Bloch wave vector.
Consequently, the SOC should be almost uninfluenced by the
QP effects. This especially holds for HSE values close to the
QP ones. The accuracy of this efficient approximation has
been demonstrated for group-II monoxides.15–17

Even though results for the lattice parameters obtained from
HSE calculations seem to be in better agreement with ex-
perimental values than results of LDA and GGA studies,48

in this work it is strictly distinguished between ground-
and excited-state properties. Hence, atomic geometries are
only computed based on the LDA, the PBE-GGA, and the
AM05 XC functionals, while the QP calculations follow the
HSE+G0W0+SOC approximation.

III. ENERGETIC, STRUCTURAL AND ELASTIC
PARAMETERS

The lattice parameters a0 (for zb polytype) as well as a, c,
u, and c/a (for wz polytype) as derived from the DFT calcula-
tions (cf. Sec. II A) are reported along with the bulk moduli B0
and their pressure derivatives B′0 in Table I. From comparison
to experimental values49–51,53,54 it is confirmed that the LDA
leads to an overbinding for the group-III nitrides; the opti-
mized lattice constants are smaller than the measured values.
In contrast, the lattice parameters turn out to be larger when
the PBE-GGA is used to describe XC, which corresponds to
the underbinding mentioned before.

Interestingly, the AM05 functional indeed yields lattice
constants in close agreement to experiment49,51,53 for AlN and
GaN polytypes. The small overestimation of < 0.6 % for the
a0, a, and c lattice constants obtained for InN using the AM05
functional can be a consequence of the fact that the layers
used in the measurements might not be completely unstrained,
defect-free, and polytype-pure. The excellent agreement of
the AM05 lattice constants with measured values for AlN and

GaN leads us to believe that this functional also gives reliable
lattice constants for InN.

In contrast to what is observed for the lattice constants a
and c of the wz crystals, the c/a ratio and the u parameter
are rather independent of the description of XC (cf. Table I).
There are only very small changes along the functionals LDA,
AM05, and PBE-GGA. Along the row wz-AlN, wz-GaN, and
wz-InN u takes a less pronounced minimum for GaN. The ex-
perimental u parameter decreases monotonously towards the
ideal tetrahedron value of u = 0.375, in agreement with the
fact that this parameter is almost indirectly proportional to
the bond ionicities g = 0.794 (AlN), 0.780 (GaN), and 0.853
(InN).55 The non-monotonous behavior of the c/a ratio for
both computed and measured values when going from AlN
over GaN to InN is because GaN and InN (as opposed to
AlN) have shallow d electrons. The values remain below
the ideal ratio c/a = 1.633 in agreement with the theoret-
ical prediction56 that for c/a < 1.633 a compound crystal-
lizes in wz structure under ambient conditions. A similar non-
monotonous behavior is observed for the stability of the poly-
types as described by the total energy differences between zb
and wz, ∆Etot = Etot(zb)−Etot(wz). The ∆Etot (cf. Table I) ex-
hibit a minimum for GaN, indicating that zb-GaN most likely
can be grown not too far from equilibrium, whereas that would
be more difficult for AlN and InN from an energetical point of
view. The ∆Etot in Table I are in rough agreement with values
obtained from DFT-LDA.56

The pair volumes Ω
zb
pair = 1/4 a3

0 and Ω
wz
pair =

√
3/4 a2c,

that are occupied by one cation-anion pair, are practically the
same for the zb or wz polytypes of each material. In addi-
tion, it is found that they increase along the row AlN, GaN,
InN (for instance Ω

zb
pair=20.9, 22.7, and 31.3 Å3 as derived us-

ing the AM05 functional), which matches the trend of an in-
creasing sum of the covalent radii of the anion and the cation:
1.93, 2.01 and 2.19 Å.57 Moreover, due to the aforementioned
overbinding, the volumes of the unit cells calculated using
the LDA are smaller than the ones obtained with the AM05
functional. The PBE-GGA leads to the largest unit-cell vol-
umes, which is in agreement with the underbinding mentioned
above.

The inverse compressibility B0 increases along the row InN,
GaN, and AlN when the same XC functional is used. B0 of
one and the same material also increases when going from
PBE-GGA over AM05 to LDA (cf. Table I). Furthermore,
there is an influence of the polytype on B0: In the case of
AlN the values for zb are larger than the wz ones, while the
opposite is true for GaN and InN. This seems again to be a
consequence of the contributions of the Ga 3d or In 4d elec-
trons, respectively, to the chemical bonding. Comparing the
calculated B0 to experimental values52,54 shows that the agree-
ment is quite good for the zb polymorphs when AM05 is used.
For the wz polymorphs of GaN and InN the measured values
are in between the PBE-GGA and AM05 ones. The pressure
coefficients B′0 vary between 3 – 5 and no clear trend for dif-
ferent XC functionals or materials is spotted. The large value
of B′0 = 12.7 measured54 for wz-InN arises probably due to
sample-quality issues.
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IV. QUASIPARTICLE ELECTRONIC STRUCTURE

In Sec. III it has been shown that the atomic geometries ob-
tained using the AM05 XC functional agree better with mea-
sured results than the LDA or PBE-GGA ones. Hence, only
results for the electronic QP energies based on the AM05 ge-
ometries are presented. In Ref. 58 (Ref. 59) the HSE+G0W0
approach has been applied to the DFT-LDA geometries of InN
(AlN). As indicated in the text, the LDA or PBE-GGA geome-
tries are used to study atomic structures that are hydrostat-
ically strained with respect to the AM05 equilibrium geome-
tries. In these cases the indirect influence of the XC functional
used in the ground-state studies within DFT on the electronic
structure (via the atomic geometry) and the direct influence of
XC according to the GW self-energy are discussed together.

A. Band structures

The QP band structures of AlN, GaN, and InN calculated
for the zb (wz) AM05 atomic geometries are shown along with
the corresponding DOS in Fig. 1 (Fig. 2). Since the spin-
orbit splittings are small, they are not shown in these figures
and the notations of the irreducible representations are given
accordingly.60–62 All band structures show a pronounced min-
imum of the lowest conduction band (CB) near the BZ center
Γ. The dispersion of this band around Γ increases along the
row AlN, GaN and InN, thereby closing the fundamental en-
ergy gap. This can be explained by the In 5s and Ga 4s levels
being lower in energy than the Al 3s one63 and the reduction
of the interatomic interaction along the row AlN, GaN, and
InN.64 The strong CB dispersion is also visible by the low
state density in the lowest part of the empty DOS (see Figs.
1 and 2). Another reason that the gaps of InN and GaN are
much smaller than the one of AlN is the remarkable pd hy-
bridization in both materials.65 This effect causes a strong pd
repulsion at Γ which is not present for AlN and hence ren-
ders zb-AlN an indirect semiconductor with a CB minimum
situated at the X point.

As can be seen in Figs. 1 and 2, the d electrons also influ-
ence the VB structure. More specifically, it is observed that
the ionic gap between the uppermost three (twofold spin de-
generate) p-like VBs and the lowest (twofold spin degener-
ate) s-like VB does not follow the trend of the charge asym-
metry coefficients.55 The reason for this behavior is the en-
ergetic overlap of the N 2s states and the Ga 3d or In 4d
states, respectively, the so-called sd hybridization. This ef-
fect is symmetry-forbidden at Γ,66 however, for zb-GaN and
zb-InN it leads to a splitting into a lower and an upper split-
off band for all k-points away from the BZ center. In addition,
four dispersionless low-lying bands appear at −16 eV (GaN)
or −15 eV (InN). All these bands give rise to pronounced
peaks in the DOS which are clearly visible in photoemission
experiments.67
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Figure 1. QP band structures and DOS (in [eV·pair]−1) without spin-
orbit interaction for zb-AlN, zb-GaN, and zb-InN. The numbers indi-
cate the irreducible representations at the respective high-symmetry
points using the notation according to Bouckaert, Smoluchowski and
Wigner (see Ref. 60). The Γ15 VB maximum is used as energy zero.
The fundamental band gap is indicated by the shaded region.

B. Fundamental gaps and their volume/pressure dependence

The fundamental gaps at the Γ point of the BZ for AlN,
GaN, and InN in the zb and the wz structure are summarized in
Table II. They separate CB states of Γ1c type from VB states of
Γ15v type for the zb crystals as well as Γ1c-like CB states from
Γ5v-like (wz-GaN, wz-InN) or Γ1v-like (wz-AlN) VB states.
Here, the denotation is changed back from Fig. 2 (Γ6 Rashba
notation61) to the textbook version (Γ5 Ref. 60). In addition,
also the indirect fundamental gap of zb-AlN between X1c-like
and Γ15v-like states is given in Table II. These results clearly
demonstrate that the approach applied in this work, i.e., calcu-
lating QP energies within the GW approximation based on an
initial electronic structure from HSE, gives excellent funda-
mental gaps for the nitrides. While this is true for the atomic
geometries obtained using the AM05 XC functional, the ones
calculated based on the LDA (PBE-GGA) lead to an overesti-
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Figure 2. QP band structures and DOS (in [eV·pair]−1) without
spin-orbit interaction for wz-AlN, wz-GaN, and wz-InN. The num-
bers indicate the irreducible representations at the respective high-
symmetry points using the Rashba notation (see Ref. 61). The Γ6
(GaN, InN) or Γ1 (AlN) VB maximum is used as energy zero. The
fundamental band gap is indicated by the shaded region.

mation (underestimation) of the direct gaps in comparison to
measured values. Thereby, it is found that the relative varia-
tion of the gap with the cell volume is most drastic for InN,
while the influence on the indirect gap of zb-AlN is much
weaker. This is a consequence of the opposite shifts of the
Γ1c and X1c levels in zb-AlN when the volume changes.

Using the changes of the unit-cell volume due to the dif-
ferent XC functionals (cf. Table I) and the fundamental band
gaps, the hydrostatic band-gap deformation potentials αV =
δEg/δ lnV are derived (cf. Table II). They are slightly larger
than values from an equally sophisticated QP approach.13 The
hydrostatic pressure coefficients αp = −αV/B0 follow with
the bulk moduli in Table I. The results for αV and αp are in
excellent agreement with measured values (see e.g. collection
in Ref. 13).

In Table III the fundamental band gaps of the zb monon-
itrides are given as calculated based on the different equi-
librium geometries (cf. Table I) and using different levels of
approximation for the XC self-energy. These numbers con-
firm that the KS eigenvalues obtained using a local/semi-
local XC functional are smaller compared to the more so-
phisticated approximations. InN even turns out to be a zero-
gap semiconductor in these cases since the ordering of the
Γ1c and the Γ15v levels is inverted.71 Including the screened-
exchange contribution34 by using the spatially non-local HSE
functional shifts the electron and hole eigenvalues in oppo-
site directions.31 Consequently, the gaps are by about 1 eV
(AlN, GaN) or 0.3 eV (InN) larger than the KS gaps (cf. Table
III). In a next step, the correct screening (including its dynam-
ics) as well as the Coulomb hole contribution34 are taken into
account by calculating QP energies within the G0W0 approx-
imation. This leads to an additional increase of the gaps by
about 0.9 eV (AlN), 0.6 eV (GaN), and 0.1 eV (InN), which
corresponds to roughly 20 % of the true fundamental gap.
Therefore, we find that eigenvalues obtained in an HSE cal-
culation significantly improve over the DFT-LDA/DFT-GGA
ones. However, only the full XC self-energy (as approxi-
mately calculated within the G0W0 approach) leads to QP gaps
that are in good agreement with measured values.

C. Valence-band splittings

Without SOC the VB maximum of the zb nitrides is a three-
fold degenerate state with Γ15v symmetry which splits into
a Γ8v (fourfold degenerate) and a Γ6v (twofold degenerate)
level in the presence of the spin-orbit interaction.60 The cor-
responding ∆so = ε(Γ8v)− ε(Γ6v) are compiled in Table IV.
These numbers show that the choice of the XC functional indi-
rectly influences the splittings via the atomic geometry. How-
ever, there is no clear trend with the (overestimated or un-
derestimated) lattice constants, since also the mixing of the p
and d like levels changes and, hence, affects the SOC split-
ting (see below). Moreover, the values for ∆so do not vary
strongly for the different cubic group-III nitrides. The results
in Table IV agree well with values from previous DFT-LDA
calculations72 from which 20.0, 18.5, and 12.6 meV was de-
rived for AlN, GaN, and InN, respectively. Also the values
∆so = 19, 17, and 5 meV which have been recommended by
Vurgaftman and Meyer1 are very close.

In the case of GaN and InN the ∆so are so small compared
to AlN since the atomic spin-orbit splittings73 for the Ga 4p
(98 meV) and Ga 3d (537 meV) electrons or the In 5p (264
meV) and In 4d (958 meV) states, respectively, partially com-
pensate each other. This compensation arises due to the pd
hybridization of atomic-like p and d states and leads to the
values given in Table IV. Interestingly, for GaN and InN the
spin-orbit splittings between L4,5 and L6 states, ∆so(L), are
larger than the respective splittings at the Γ point. In contrast
to AlN, the rule72 ∆so(L)/∆so(Γ) = 2/3 is violated for GaN
and InN. A similar effect has been observed for other tetrahe-
drally coordinated III-V compounds with relatively large dif-
ferences of the covalent radii, for instance InP.74
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For wz crystals the VB structure is more complex due to
the hexagonal crystal field which leads to a crystal-field split-
ting. Hence, without SOC one finds the twofold degenerate
Γ5v and the non-degenerate Γ1v states at the VB maximum.
Thereby, we use the Bouckaert, Smoluchowski and Wigner
notation60,62 Γ15v which leads to Γ5v and Γ1v instead of Γ6v
and Γ1v as in the Rashba denotation61 applied in Fig. 2. The
Γ5v state splits into Γ9v and Γ7v levels and Γ1v becomes a level
with Γ7v symmetry in the presence of SOC.

The values for the crystal-field splittings ∆cf in Table IV in-
dicate a small influence of the GW corrections on the crystal-
field splittings: the QP shifts towards lower band energies
are larger for the Γ5v states than for the Γ1v states. Conse-
quently, the QP corrections reduce the crystal-field splitting
for wz-GaN and wz-InN by about 3 – 7 meV. In the case of
wz-AlN an enlargement of the absolute value by about 17 – 20
meV is computed due to the negative sign of ∆cf. The abso-
lute splittings in Table IV are somewhat larger than the val-
ues recommended by Vurgaftman and Meyer.1 However, the
sign and, hence, the ordering of the Γ5v and Γ1v states are the
same. Moreover, the values calculated in this work are in good
agreement with other ab-initio calculations, e.g. collection in
Ref. 63 and references therein. The QP calculations in Ref. 13
tend to overestimate the absolute values for ∆0

cf.
Within k ·p theory the energy differences of the uppermost

valence levels in a wz crystal, ∆E1 = ε(Γ9v)− ε(Γ7+v) and
∆E2 = ε(Γ9v)− ε(Γ7−v), can be described by75

∆E1/2 = ε (Γ9v)− ε
(
Γ7+/−v

)
=

1
2
(
∆cf +∆so‖

)
∓ 1

2

√(
∆cf−

1
3

∆so‖

)2

+
8
9

∆2
so⊥.

(1)

In Eq. (1), 3i∆so‖ = 〈y |Hsz|x〉 and 3i∆so⊥ = 〈z |Hsx|y〉 =
−
〈
z
∣∣Hsy

∣∣x〉 are the spin-orbit splitting parameters; the spin-
orbit interaction Hso is divided according to Hso = Hsxσx +
Hsyσy+Hszσz by means of the Pauli spin matrices σ . Therein,
|x〉, |y〉, and |z〉 describe the p like basis functions at Γ. In ad-
dition, ∆cf represents the differences in the VB eigenvalues of
the |x〉(|y〉) and the |z〉 states.

However, Eq. (1) indicates a complication for both theory
as well as experiment. In band-structure calculations and also
in all spectroscopies only energy differences such as ∆E1 and
∆E2 are determined. Hence, only two numbers are avail-
able to determine the three band-structure parameters ∆cf,
∆so‖, and ∆so⊥ from Eq. (1). If no additional assumption is
made, the lack of one parameter for the determination of ∆cf,
∆so‖, and ∆so⊥ leads to a parameter field ∆so‖ = ∆so‖(∆cf) and
∆so⊥ = ∆so⊥(∆cf) which is visualized in Fig. 3. One possible
additional assumption to fix all parameters is the quasicubic
approximation ∆so‖=∆so⊥=∆

qc
so and ∆cf =∆

qc
cf . Interestingly,

when ∆cf > 0 (as found for GaN and InN) the resulting ∆
qc
cf are

not very different from the values computed in the absence of
SOC (cf. Table IV). For ∆cf < 0 (AlN) a further increase of
the absolute values is observed. In any case the quasicubic
spin-orbit splitting constant ∆

qc
so is by nearly a factor of 2 (1.5)

smaller than its zb value for InN (GaN), while there is no such

�20 20 40 60

�20

20

40

60

!so"/⊥ (meV)

!cf  (meV)

Figure 3. (Color online) Geometric solution of Eq. (1) to relate the
∆E1/2 values (cf. Table IV and ∆1, ∆2, and ∆3 for wz-GaN. The black
line represents 3∆2 while the blue ellipsoid gives 3∆3. The two cross-
ings indicate the two possible solutions within the quasicubic approx-
imation.

deviation for AlN, which has no d electrons. This has recently
been discussed for the first time,45 and, according to the re-
sults of the present work, the recommendation1 to choose the
same spin-orbit splittings for wz and zb fails for compounds
with shallow d electrons.

Another additional assumption can be derived by identify-
ing ∆cf = ∆0

cf which leads to ∆so‖ 6= ∆so⊥. Moreover, the ∆E1
and ∆E2 values in Table IV indicate that ∆cf, as computed
using the eigenvalues without SOC, is almost in agreement
with the average distance 1

2 [ε(Γ9v) + ε(Γ7+v)− ε(Γ7−v)] =
1
2 [∆E1 + ∆E2] between the valence levels including SOC.
Therefore, the choice ∆cf = ∆0

cf seems to be reasonable. For
a more detailed comparison of theoretical and experimental
values, the reader is referred to Ref. 45.

D. Band dispersion

In Fig. 4 the large impact of the spin-orbit and crystal-field
splittings on the dispersion of the uppermost valence bands
around Γ is shown for the Γ – X and the Γ – L directions in
the fcc BZ as well as the Γ – A and the Γ – M directions in
the hexagonal BZ. Figure 4a illustrates the splittings of the six
uppermost VBs of the zb polymorphs: while the degeneracy
of the heavy-hole (hh) bands, which belong to the Λ4 and Λ5
irreducible representations, is lifted along the Γ – L direction,
the light hole (lh) and the spin-orbit split-off (so) bands remain
twofold degenerate. The degeneracy of the L4 and L5 repre-
sentations occurs due to the time-reversal symmetry. These
effects are well known for other zb crystals74,76,77 as well as
for the nitrides.72

The splitting of the hh bands near Γ along the [111] direc-
tion can be described by the relation74 ∆Ehh = −2

√
2Ck · k.

Using our ab-initio results we derive values of Ck = −0.005,
−0.063 and −0.178 eVÅ for AlN, GaN and InN which are in
qualitative agreement with the trends found for group-V com-
pounds containing Al, Ga, and In.74 The strong increase of the
Ck going from AlN to GaN or InN can be traced back to the
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Figure 4. The HSE+SOC results for the uppermost VBs of AlN,
GaN, and InN in (a) the zb and (b) the wz structure are shown along
two high-symmetry directions in the BZ. Up to 1/16 of the paths
Γ – X , Γ – L, and Γ – M in the BZ is shown, as well as 1/12 of the
Γ – A path. The heavy-hole (hh), light-hole (lh), spin-orbit split-off
(so), and crystal-field split-off (ch) bands are labeled and the top of
the VBs is used as energy zero.

presence of the shallow d states that contribute to the top of
the VBs in GaN and InN.72,78

Figure 4b illustrates the splitting effects for the VBs of the
wz nitrides along the Γ – M direction in the BZ. In this case
all the irreducible representations compatible with spin are
singly degenerate (except for the BZ center and the BZ bound-
ary). In contrast to that, no spin splitting of the three VBs
appears along the hexagonal Γ – A direction since the small
point group of these k points is C6v. Hence, the irreducible
representations that are compatible with spin are twofold de-
generate like Γ9, Γ7+ and Γ7− in the BZ center.79 Indeed, for
GaN and InN a clear splitting of the lh bands is visible in Fig.
4b, whereas the splittings for the other bands are small.

However, as can be seen for wz-GaN and wz-InN in Fig. 4b,
the interpretation of the VBs can be more complex due to state
mixing and band crossings near the Γ point. For these mate-
rials the definition of spin splittings that are linear in the k
vector is impossible. For that reason the spin-orbit splittings
of the hh, lh, and ch bands along the Γ – M direction are com-
pared to the corresponding splitting of the lowest CB in Fig. 5.
This shows that the influence of the SOC on the hh band and
the lowest CB remains relatively small. Contrary, the impact
on the lh and the ch bands is much larger. As observed for the
zb polymorphs, there is a clear chemical trend of increasing
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Figure 5. (Color online) The spin-orbit-induced splittings for the wz
nitrides in the proximity of Γ are shown along the Γ – M direction.
The hh (red open circles), the lh (blue triangles), and the ch (green
squares) bands are given. For comparison the splittings for the lowest
CB (black circles) are included.

SOC splittings along the row AlN, GaN, and InN. For InN the
k-vector-induced splittings even approach the order of magni-
tude of ∆so (cf. Table IV). The non-monotonous behavior of
the wave-vector-induced splittings of the lh and ch bands of
wz-GaN and wz-InN is a consequence of the corresponding
band crossings along Γ – M in Fig. 4b.

E. Effective masses

The band dispersions and curvatures away from Γ in Fig. 4
depend not only on the splittings of the valence states but also
on the coupling between the lowest CB and the uppermost
VBs. Within k · p theory60,75 this coupling is governed by
the interaction of the s-like CB state |s〉 and the p-like va-
lence wave functions |x〉, |y〉, |z〉 at Γ, mediated by the mo-
mentum operator p. The respective matrix elements P⊥ =

h̄
2m0
〈s |px|x〉 = h̄

2m0

〈
s
∣∣py
∣∣y〉 or P‖ = h̄

2m0
〈s |pz|z〉 give rise to

relatively large values. In units of energy, the Kane parameters
Ep⊥/‖=

2m0
h̄2 P2

⊥/‖ calculated using the HSE wave functions are
Ep = 15.86 / 13.26 / 9.50 eV for zb-AlN / zb-GaN / zb-InN or
Ep⊥ = 15.78 / 12.83 / 9.39 eV and Ep‖ = 15.92 / 14.79 / 10.52
eV in the wz case. These values are close to those derived from
experimental data for InN80,81 but seem to underestimate the
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values suggested for GaN.82,83 The agreement with theoreti-
cal values13 calculated from the OEPx wave functions is good.
However, the agreement is worse when comparing to results
for GaN that take the GW corrections into account.14

The effective electron and hole masses are extracted from
the HSE band-structure calculations (including spin-orbit in-
teraction), assuming that the influence of the QP corrections
on the band dispersion is small. Thereby, the complex curva-
ture of the VBs shown in Fig. 4 renders the determination of
the effective masses difficult. To avoid these complications,
the lifting of degeneracies of the lh and the hh bands occur-
ring away from the Γ point due to SOC are neglected by using
averages over the k-vector-induced spin-orbit-split band pairs.

In addition, it is essential to employ only the close proxim-
ity of Γ for the determination of the effective masses. The use
of a larger k-point region would give rise to larger effective
masses of the lh band otherwise due to the significant non-
parabolicity of the corresponding bands (cf. Fig. 4a). How-
ever, the strong warping of the hh and the lh bands observed
for the zb polymorphs is taken into account. In the wz case
only wave vectors that are closer to the Γ point than the band-
crossing points are taken into consideration. Figure 4b shows
that especially the lh masses along the Γ – M direction may
sensitively depend on the wave-vector range chosen for their
determination. This is not merely a shortcoming of the theo-
retical description but also holds for their experimental deter-
mination by varying the hole concentrations. For the electron
masses the situation is less complex as illustrated by the band
structures in Figs. 1 and 2.

The effective masses of the uppermost three VBs and the
lowest CB are given for the zb polytypes in Table V. While the
HSE+SOC results describe the electron masses for zb-GaN
quite well, they slightly overestimate them for zb-InN in com-
parison to measured values. Nevertheless, the numbers given
in Table V confirm the extremely small electron mass for InN
found in experiments. Overall, the results in the present work
are closer to experimentally determined masses than found in
previous calculations. The values of me⊥(X) = 0.30m0 and
me‖(X) = 0.53m0 calculated for the CB minimum of zb-AlN
in this work agree well with me⊥(X) = 0.33m0 and me‖(X) =
0.52m0 as derived within the LDA using the experimental lat-
tice parameters.86 The same holds for the effective masses of
AlN and GaN at the CB minimum at the Γ point.86 Especially
for AlN and GaN the hole masses agree very well with the
fully relativistic LDA calculations of Ramos et al.,84 as well
as with other first-principles calculations based on local or
semilocal XC functionals,86 empirical-pseudopotentials85 or
the OEPx+G0W0 approach.13 In general and also in our stud-
ies, no clear trend of the hole masses with the different XC
functionals is found.

The electron masses at the Γ point decrease along the row
AlN, GaN, and InN. Qualitatively they nearly agree with the
values of 0.29, 0.20, and 0.04 obtained using the relation
me(Γ)/m0 = 1/[1 + Ep/Eg]. The hole masses of the spin-
orbit split-off VBs in Table V are isotropic and also decrease
from AlN over GaN to InN. The values in Table V show that
the masses of the lh band are by a factor of mhh/mlh = 3 – 27
lighter than the hh ones. The masses of the lh bands approach

values on the order of the electron effective mass. The fact that
the hh and the lh masses (Table V) are different in the three di-
rections confirms the well-known warped isoenergy surfaces
of the Kane model.60

The six different hh and lh masses given in Table V contain
more information than is included in the Kane model of the
three uppermost VBs. In the Kane model these bands are char-
acterized by three Luttinger parameters γ1, γ2, and γ3.82,86 Us-
ing the HSE+SOC values, we determine the Luttinger parame-
ters along the Γ – X and the Γ – L directions using the assump-
tions γ1 =

m0
4 (1/m[111]

hh +1/m[111]
lh +1/m[001]

hh +1/m[001]
lh ), γ2 =

m0
4 (1/m[001]

lh − 1/m[001]
hh ), and γ3 = m0

4 (1/m[111]
lh − 1/m[111]

hh ).
Using the masses given in Table V we obtain γ1 =
1.478 / 2.409 / 7.143, γ2 = 0.379 / 0.592 / 2.890, and γ3 =
0.595 / 0.959 / 3.439 for AlN / GaN / InN. We find a dramatic
increase of the Luttinger parameters from AlN via GaN
to InN. The present results are close to the results of an
OEPx+G0W0 calculation (neglecting SOC).13 However, for
InN we obtain somewhat larger Luttinger parameters.

In the case of the wz polymorphs the band anisotropy is in-
fluenced by the lower crystal symmetry. The uppermost VBs
are isotropic in the plane perpendicular to the c-axis due to
the lift of the degeneracy at Γ. Therefore, the curvatures of
the bands along the Γ – M and the Γ – K directions are nearly
the same, whereas they differ from the dispersions along the
Γ – A direction.

As can be seen from the masses for the wz polytypes given
in Table VI, the overall agreement (especially for the hh VB
as well as the CB) with other calculations13,86,90 for AlN and
GaN (see Table VI) is much better than in the zb case. This
also holds for the comparison with masses derived from mea-
surements for wz-GaN.93,94 It has to be pointed out again that
due to the non-parabolicity especially of the lh band its mass
in the plane perpendicular to the c-axis is sensitive to the k
region chosen for its calculation. Consequently, if larger k
regions play a role in the measurement, an increase of the lh
mass is expected (cf. Fig. 4b).

As shown for GaN and InN in Fig. 5 the averages of the lh
and ch in-plane masses are influenced by the spin-orbit split-
ting of the corresponding VBs. For example the two lh masses
are 0.44 and 0.24 m0 for GaN or 0.15 and 0.06 m0 for InN in-
stead of 0.31 m0 or 0.09 m0 in Table VI. In case of ch masses
was computed 3.30 and 0.54 m0 instead 0.92 m0 for GaN as
well as 0.61 and 0.11 m0 instead 0.18 m0 for InN, see Table VI.
Furthermore, the in-plane hole masses calculated in this work
for wz-InN are much smaller than previous predictions.85,92,95

This is traced back to the more accurate band-structure cal-
culations with respect to the gap value and the inclusion of
SOC.

It is observed that the effective masses decrease along the
row wz-AlN, wz-GaN, and wz-InN (cf. Table VI). For the elec-
tron masses this tendency can be explained again by the cou-
pling of s- and p-states, Ep⊥/‖, and the gaps, Eg or Eg +∆cr.
Using the estimates me‖(Γ)/m0 = 1/[1+Ep‖/Eg +∆cr] and
me⊥(Γ)/m0 = 1/[1+Ep⊥/Eg]

60 one finds me‖(Γ)/m0 = 0.28,
0.20, and 0.06 and me⊥(Γ)/m0 = 0.29, 0.22, and 0.06 based
on the computed energy values. Indeed, these estimated val-
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ues are not too far from the results of the full calculations
in Table VI and, hence, explain the chemical trend and the
symmetry-induced mass splitting.

V. SUMMARY AND CONCLUSIONS

In this paper the ground-state (energetic, structural, elastic)
and excited-state (energy bands and band parameters) proper-
ties of the zb and the wz polytypes of AlN, GaN, and InN have
been investigated using modern parameter-free approaches.
From the comparison of different approximations of XC it has
been shown that the AM05 XC functional gives rise to atomic
geometries in excellent agreement with experimental data and,
therefore, circumvents the overbinding (underbinding) of the
LDA (GGA). Since the atomic positions are an important pre-
requisite for calculating the excited-state properties, the sec-
ond part of the paper is based on the AM05 geometry results.

The electronic structure has been calculated by solving a
QP equation which includes the XC self-energy of the elec-
trons and holes within the G0W0 approximation, based on HSE
eigenvalues and wave functions. The resulting gaps are in ex-
cellent agreement with experimental values. The influence of
hydrostatic strain has been studied. Especially the fundamen-
tal energy gap of InN varies dramatically with the strain as
indicated by the large volume deformation potential.

It has been found that the influence of the relative QP cor-
rections to the HSE eigenvalues on the VBs around Γ is small.
The inclusion of the spin-orbit interaction into the HSE calcu-
lations allowed us to study the corresponding energy splittings

and to determine k ·p parameters. Thereby, the validity of the
quasicubic approximation for wz-GaN and wz-InN has been
found to be questionable, especially due to the influence of
the semicore d electrons.

In addition, the effective electron and hole masses are cal-
culated. In the case of the VBs (especially for wz polytypes)
band crossings render a parabolic description unfeasible for
too large k regions. Treating XC within the HSE approach,
tends to increase the masses and, hence, to lower the band
dispersion near Γ. We demonstrate the importance of the
spin-orbit interaction for the dispersion and the splittings of
the bands around the BZ center and, hence, for the exact
band masses. The comparison with measured effective masses
shows good agreement with the computed values especially
for GaN. For InN polytypes trustable effective masses have
been derived.
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Table I. The cubic lattice constant a0 (in Å) and the hexagonal lattice
parameters a, c (in Å) as well as c/a and the internal parameter u are
given for AlN, GaN and InN polytypes. The volume per cation-anion
pair Ωpair (in Å3) is also listed. In addition, also the bulk moduli B0
(in GPa) and their derivatives with respect to pressure B′0 as derived
from fits to the Murnaghan equation of state are given. The differ-
ence of the total energies ∆Etot in (meV/pair) between the zb and
the wz polymorphs is included. Results are derived from calcula-
tions using the LDA, PBE-GGA, and AM05 XC functionals and, for
comparison, experimental values are listed.

AM05 LDA PBE-GGA Expt.
zb-AlN a0 4.374 4.343 4.402 4.37a

Ωpair 20.922 20.482 21.328
B0 204.7 212.0 193.2 202b

B′0 4.38 3.22 4.16
∆Etot 47 46 41

zb-GaN a0 4.495 4.465 4.547 4.49c

Ωpair 22.710 22.257 23.509
B0 181.9 188.8 172.0 190b

B′0 4.07 4.44 3.36
∆Etot 15 14 18

zb-InN a0 5.005 4.959 5.059 4.98b

Ωpair 31.346 30.493 32.371
B0 130.8 144.7 120.2 137d

B′0 4.07 4.95 4.10
∆Etot 24 24 70

wz-AlN a 3.112 3.088 3.129 3.11e

c 4.976 4.946 5.018 4.978e

c/a 1.599 1.601 1.603 1.601e

u 0.380 0.379 0.379 0.382e

Ωpair 20.869 20.420 21.276
B0 202.3 210.8 187.2 185d

B′0 4.36 3.95 4.02 5.7d

wz-GaN a 3.181 3.158 3.217 3.19e

c 5.180 5.145 5.241 5.166 – 5.185e

c/a 1.628 1.629 1.629 1.627e

u 0.376 0.376 0.376 0.377e

Ωpair 22.698 22.219 23.488
B0 183.2 197.4 172.2 188d

B′0 4.17 4.23 4.63 4.3f

wz-InN a 3.549 3.517 3.587 3.54f

c 5.736 5.685 5.789 5.718e

c/a 1.616 1.616 1.613 1.613f

u 0.378 0.377 0.378 0.375b

Ωpair 31.293 30.451 32.253
B0 131.3 145.3 120.9 125.5f

B′0 4.76 4.52 5.37 12.7f

a Ref. 49
b Ref. 50
c Ref. 51
d Ref. 52
e Ref. 53
f Ref. 54
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Table II. Energies Eg (in eV) of the fundamental band gaps at Γ ob-
tained within HSE+G0W0. For the AM05 equilibrium geometry, the
hydrostatic pressure coefficients αP (in meV/GPa) and the volume
deformation potentials αV (in eV) of the fundamental band gap are
given. In the case of zb-AlN the values in parenthesis refer to the
indirect gap between Γ and X .

geometry: geometry: geometry: Expt.
AM05 LDA PBE-GGA

zb-AlN Eg 6.271 6.659 6.071 5.93a

(5.198) (5.265) (5.164) (5.3)a

αV −10.11
(−2.40)

αP 49.4
(11.7)

zb-GaN Eg 3.427 3.609 3.158 3.3b

αV −8.60 −7.9b

αP 47.3 40 – 46b

zb-InN Eg 0.414 0.540 0.264 0.61c

αV −4.48
αP 34.2 31b

wz-AlN Eg 6.310 6.553 6.144 6.28d

αV −10.07
αP 49.8 49b

wz-GaN Eg 3.659 3.847 3.366 3.51d

αV −8.52
αP 46.5 37 – 47b

wz-InN Eg 0.638 0.765 0.494 0.7d,e

αV −4.56
αP 34.7 22 – 30b

a Ref. 68
b Ref. 51
c Ref. 69
d Collection of experimental data in Ref. 70
e Ref. 2

Table III. Fundamental band gaps Eg (in eV) of zb-AlN, zb-GaN, and
zb-InN calculated for the LDA, PBE-GGA, and the AM05 equilib-
rium geometries. Three different approximations for the XC self-
energy are compared: (i) “(semi-)local” means that the same XC
functional as for the calculation of the atomic geometry has been
used. In addition, the gaps calculated using (ii) the HSE functional,
and (iii) the HSE+G0W0 approach are included.

XC self-energy AM05 LDA PBE-GGA
zb-AlN (semi-)local 3.198 2.977 3.312

HSE 4.333 4.354 4.316
HSE+G0W0 5.198 5.265 5.164

zb-GaN (semi-)local 1.843 1.925 1.572
HSE 2.844 2.972 2.590

HSE+G0W0 3.427 3.609 3.158
zb-InN (semi-)local ≈ 0.0 ≈ 0.0 ≈ 0.0

HSE 0.325 0.416 0.206
HSE+G0W0 0.414 0.540 0.264



14

Table IV. Different energy splittings (from HSE calculations) of
the uppermost VB states of the nitrides in three different equilib-
rium geometries are given in meV: The spin-orbit splitting con-
stants at the BZ center Γ, ∆so = ε(Γ8v)− ε(Γ6v), and at the L
point, ∆so(L) = ε(L4,5)−ε(L6), for zb polymorphs as well as ∆E1 =
ε(Γ9v)− ε(Γ7+v) and ∆E2 = ε(Γ9v)− ε(Γ7−v) for wz polymorphs
are calculated from the HSE eigenvalues including SOC. The crystal-
field splittings ∆0

cf = ε(Γ5)− ε(Γ1) (in the absence of SOC) are also
given. The values ∆

qc
cf are derived within the quasicubic approxima-

tion. The spin-orbit interaction constants ∆so‖ as well as ∆so⊥ are
derived using ∆0

cf for the crystal-field splitting (see text). The respec-
tive HSE+G0W0 results are provided in parenthesis.

AM05 LDA PBE-GGA Expt.

zb-AlN ∆so(Γ) 21.8 21.9 21.8 19a

∆so(L) 16.9 17.0 16.8
zb-GaN ∆so(Γ) 20.2 19.4 21.6 17a

∆so(L) 31.3 31.2 31.6
zb-InN ∆so(Γ) 17.4 14.4 20.7 5a

∆so(L) 53.7 53.0 54.3
wz-AlN ∆0

cf −257.2 −242.7 −217.2 −169b

(−275.7) (−260.0) (−234.3)
∆E1 −250.4 −235.9 −210.5

(−268.9) (−253.2) (−227.6)
∆E2 14.9 (14.9) 14.9 (14.9) 14.9 (14.9)
∆

qc
cf −257.3 −242.7 −217.3 −230b

(−275.8) (−260.1) (−234.4)
∆

qc
so 21.8 (21.8) 21.7 (21.8) 21.7 (21.7) 19b

∆so‖ 21.7 (21.7) 21.7 (21.7) 21.6 (21.6)
∆so⊥ 22.7 (23.5) 22.1 (22.8) 22.5 (23.3)

wz-GaN ∆0
cf 32.2 (26.4) 40.9 (34.5) 32.0 (27.3) 10b

∆E1 8.4 (8.4) 8.7 (8.7) 9.0 (9.0)
∆E2 41.8 (36.0) 49.3 (42.9) 42.6 (37.9)
∆

qc
cf 35.3 (28.5) 43.1 (36.1) 35.3 (29.6) 39b

∆
qc
so 14.9 (15.9) 14.9 (15.5) 16.3 (17.3) 17b, 8b

∆so‖ 18.0 (18.0) 17.1 (17.1) 19.6 (19.6)
∆so⊥ 22.0 (19.7) 21.5 (19.6) 23.2 (21.3)

wz-InN ∆0
cf 34.6 (31.7) 41.3 (38.5) 25.1 (22.1) 40b

∆E1 6.3 (6.3) 5.4 (5.4) 6.3 (6.3)
∆E2 42.8 (39.9) 47.4 (44.7) 36.5 (33.5)
∆

qc
cf 38.6 (35.6) 44.1 (41.3) 32.0 (28.8) 39b

∆
qc
so 10.5 (10.6) 8.7 (8.8) 10.8 (11.0) 5b

∆so‖ 14.5 (14.5) 11.5 (11.6) 17.7 (17.7)
∆so⊥ 22.4 (21.4) 20.1 (19.7) 24.7 (23.2)

a Ref. 49
b Ref. 51
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Table V. Effective heavy-hole (hh), light-hole (lh), spin-orbit split-off
hole (so), and electron (e) masses (in units of the free-electron mass
m0) as derived from the HSE band structure (including SOC) of zb-
AlN, zb-GaN and zb-InN. While hh and lh masses along the [100],
[110], and [111] directions are given, only the isotropic mass for the
so case is included. The values for the hh and lh masses represent
averages along Γ – L and Γ – K. For AlN, longitudinal and transverse
electron masses are included also for the X point. The results are
compared with values from other calculations and experiment.

m[100]
hh m[100]

lh m[110]
hh m[110]

lh m[111]
hh m[111]

lh mso me(Γ)
zb-AlN

This work 1.32 0.44 2.32 0.39 3.98 0.38 0.55 0.30
a 1.44 0.42 3.03 0.37 4.24 0.36 0.63 0.28
b 1.02 0.37 1.89 0.32 2.64 0.30 0.54 0.23
c 1.33 0.47 2.63 0.40 3.91 0.38 0.32
d 0.33

zb-GaN
This work 0.83 0.28 1.59 0.25 1.95 0.23 0.34 0.19

a 0.86 0.21 1.65 0.19 2.09 0.19 0.30 0.14
b 0.84 0.22 1.52 0.20 2.07 0.19 0.35 0.14
c 0.81 0.27 1.38 0.23 1.81 0.22 0.19
d 0.19

Expt.f 0.15
zb-InN

This work 0.91 0.079 1.55 0.065 1.89 0.070 0.11 0.052
c 0.84 0.080 1.37 0.078 1.74 0.077 0.054
e 1.26 0.100 2.22 0.097 2.74 0.096 0.19 0.066

Expt.g 0.041

a Ref. 84
b Ref. 85
c Ref. 13
d Ref. 86
e Ref. 87
f Ref. 88
g Ref. 89
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Table VI. Effective heavy-hole (hh), light-hole (lh), crystal-field
split-off hole (ch), and electron (e) masses (in units of the free-
electron mass m0) as derived from the HSE band structure includ-
ing SOC of wz-AlN, wz-GaN and wz-InN. The masses are evaluated
along the Γ – A, Γ – M, and Γ – K direction in the BZ. The results are
compared with values from other calculations and experiments.

mA
hh mA

lh mA
ch mA

e mM,K
hh mM,K

lh mM,K
ch mM,K

e
wz-AlN

This work 3.31 3.06 0.26 0.32 6.95 0.35 3.47 0.34
a 2.37 2.37 0.21 0.23 3.06 0.29 1.20 0.24
b 3.68 3.68 0.25 0.33 6.33 0.25 3.68 0.25
c 3.53 3.53 0.26 0.35 11.14 0.33 4.05 0.35
d 0.29 0.34

Expt. i 0.29-0.45 0.29-0.45
wz-GaN

This work 2.00 1.22 0.20 0.21 0.57 0.31 0.92 0.21
c 2.00 1.19 0.17 0.35 0.34 0.35 1.27 0.35
e 1.76 1.76 0.14 0.19 1.69 0.14 1.76 0.17
f 1.88 0.92 0.19 0.19 0.33 0.36 1.27 0.21

Expt. 2.20g 1.10h 0.30i 0.20i 0.42i 0.51i 0.68i 0.20i

wz-InN
This work 1.98 1.02 0.08 0.06 0.44 0.09 0.18 0.06

a 2.44 2.44 0.14 0.14 2.66 0.15 3.42 0.14
e 1.56 1.56 0.10 0.11 1.68 0.11 1.39 0.10
j 1.39 1.39 0.10 0.12 1.41 0.12 1.69 0.11

Expt. i 0.07 0.07
k 0.055 0.055

a Ref. 85
b Ref. 90
c Ref. 86
d Ref. 91
e Ref. 92
f Ref. 13
g Ref. 93
h Ref. 94
i Collection of experimental data in Ref. 13
j Ref. 95
k Ref. 96


